Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Phys ; 125(4): 281-288, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459481

RESUMO

ABSTRACT: A preclinical radiotherapy system producing FLASH dose rates with 12 MV bremsstrahlung x rays is being developed at Stanford University and SLAC National Accelerator Laboratory. Because of the high expected workload of 6,800 Gy w -1 at the isocenter, an efficient shielding methodology is needed to protect operators and the public while the preclinical system is operated in a radiation therapy vault designed for 6 MV x rays. In this study, an analysis is performed to assess the shielding of the local treatment head and radiation vault using the Monte Carlo code FLUKA and the empirical methodology given in the National Council on Radiation Protection and Measurements Report 151. Two different treatment head shielding designs were created to compare single-layer and multilayer shielding methodologies using high-Z and low-Z materials. The multilayered shielding methodology produced designs with a 17% reduction in neutron fluence leaking from the treatment head compared to the single layered design of the same size, resulting in a decreased effective dose to operators and the public. The conservative assumptions used in the empirical methods can lead to over-shielding when treatment heads use polyethylene or multilayered shielding. High-Z/Low-Z multilayered shielding optimized via Monte Carlo is shown to be effective in the case of treatment head shielding and provide more effective shielding design for external beam radiotherapy systems that use 12 MV bremsstrahlung photons. Modifications to empirical methods used in the assessment of MV radiotherapy systems may be warranted to capture the effects of polyethylene in treatment head shielding.


Assuntos
Fótons , Radioterapia (Especialidade) , Humanos , Raios X , Fótons/uso terapêutico , Radiografia , Polietileno , Método de Monte Carlo , Aceleradores de Partículas , Nêutrons
2.
Med Phys ; 50(5): 3055-3065, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36780153

RESUMO

PURPOSE: A preclinical MV-energy photon FLASH radiotherapy system is being designed at Stanford and SLAC National Accelerator Laboratory. Because of the higher energy and dose rate compared to conventional kV-energy photon laboratory-scale irradiators, adequate shielding in a stand-alone cabinet form factor is more challenging to achieve. We present a Monte Carlo simulation of multilayered shielding for a compact self-shielding system without the need for a radiation therapy vault. METHODS: A multilayered shielding approach using multiple alternating layers of high-Z and low-Z materials is applied to the self-shielded cabinet to effectively mitigate the secondary radiation produced and to allow the device to be housed in a Controlled Radiation Area outside of a radiation vault. The multilayered shielding approach takes advantage of the properties of high-Z and low-Z radiation shielding materials such as density, cross-section, atomic number of the shielding elements, and products of radiation interactions within each layer. The Monte Carlo radiation transport code, FLUKA, is used to simulate the total effective dose produced by the operation. RESULTS: The multilayered shielding designs proposed and simulated produced effective dose rates significantly lower than monolayer designs with the same total material thickness at the regulatory boundary; this is accomplished through the manipulation of the locations where secondary radiation is produced and reactions due to material properties such as neutron back reflection in hydrogen. Borated polyethylene at 5 wt% significantly increased the shielding performance as compared to regular polyethylene, with the magnitude of the reduction depending upon the order of the shielding material. CONCLUSIONS: The multilayered shielding provides a path for shielding preclinical FLASH systems that deliver MV-energy bremsstrahlung photons. This approach promises to be more efficient with respect to the shielding material mass and space claim as compared to shielded vaults typically required for clinical radiation therapy with MV photons.


Assuntos
Fótons , Polietilenos , Fótons/uso terapêutico , Método de Monte Carlo , Simulação por Computador
3.
Radiat Res ; 196(3): 272-283, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237146

RESUMO

In the event of a fission-based weapon or improvised nuclear device (IND) detonation, dose coefficients can be harnessed to provide dose assessments for defense, emergency preparedness, and consequence management, as well as to prospectively inform the assessment of radiation biomarkers and development of medical prophylaxis countermeasures for defense and homeland security stakeholders and decision-makers. Although dose coefficients have previously been calculated for this group, they would apply specifically to the studied population, the 1945 Japanese cohort, after which their anthropomorphic computational phantoms were modeled. For this reason, applications to other populations may be limited, and instead, an assessment of a more standardized population is desired. We employed a series of computational human phantoms representing international reference individuals: UF/NCI voxel phantom series containing newborn, 1-, 5-, 10-, 15-, and 35-year-old males and females. Irradiation of the phantoms was simulated using the Monte Carlo N-Particle transport code to determine organ dose coefficients under four idealized irradiation geometries at three distances from the detonation hypocenter at Hiroshima and Nagasaki using DS02 free-in-air prompt neutron and photon fluence spectra. Through these simulations, age-specific dose coefficients were determined for individual organs. Various articulated PIMAL stylized phantoms were simulated as well to estimate the effect of body posture on dose coefficients and determine the effect of posture on dosimetric estimation and reconstruction. Results additionally demonstrate that 137Cs and the Watt fission spectra are not ideal general surrogate sources for fission weapons, which may be considered for experimental testing of medical countermeasures. Supplementary data provided tabulates the compilation of organ dose-rate coefficients in this study.


Assuntos
Simulação por Computador , Fissão Nuclear , Armas Nucleares , Radiometria/métodos , Adolescente , Adulto , Sobreviventes de Bombas Atômicas , Radioisótopos de Césio , Pré-Escolar , Relação Dose-Resposta à Radiação , Feminino , Humanos , Recém-Nascido , Japão , Masculino , Método de Monte Carlo , Especificidade de Órgãos , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radioisótopos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...